A new method in diffraction tomography based on the optimization of a topology

Gonzalo R. Feijóo

Sandia National Laboratories Livermore, CA

Outline

Introduction: Inverse scattering problem

First method: Shape optimization

Reconstructions

An improved method: Topological derivative

Reconstructions

Conclusions and future work

Reconstruct shape of scatterer(s)

Problem definition: Given

- ullet the measured signal u_m on Γ_s ,
- the forward model $a(\Omega; w, u) = \ell(\Omega; w) \ \forall w$,
- the operator $\mathcal{F}(\Omega, u(\Omega)) = u_{\mathrm{sp}}$ on Γ_s ,

find the domain Ω such that " $\mathcal{F}(\Omega, u(\Omega)) = u_T$."

Remarks:

- \bullet Ω is the domain where the model is valid.
- $a(\Omega; w, u) = \ell(\Omega; w) \ \forall w$ describes the interaction between the incident wave and the medium.

Forward problem: Given $u_{\text{inc}} = \exp(ik\boldsymbol{x}\cdot\boldsymbol{d})$, find $u = u_s + u_{\text{inc}}$ such that

$$-\nabla^2 u - k^2 u = 0 \qquad \text{in } \mathbb{R}^2,$$

$$\nabla u \cdot \boldsymbol{n} = 0 \qquad \text{on the scatterer(s) surface,}$$

$$\lim_{r \to \infty} r^{1/2} \left(\frac{\partial u_s}{\partial r} - \mathrm{i} k u_s \right) = 0 \qquad \text{Sommerfeld condition.}$$

Equivalent weak form: Find u such that

$$a(\Omega; w, u) = \ell(\Omega; w) \quad \forall w.$$

Solution methods

- Backpropagation algorithm (Devaney, 1982).
 - + Fast.
 - Based on the Born or Rytov approximations.
- Nonlinear methods (Chew and Wang, 1990; Kleinman and van den Berg, 1992; Natterer and Wübbeling, 1995).
 - + Avoid Born or Rytov approximations.
 - Slow: methods are iterative in nature.

Goal: Construct an efficient algorithm that avoids these approximations.

Propose two algorithms:

- 1. Based on the concept of an "optimal shape" for the inverse problem.
- 2. Improved algorithm based on the "optimal topology" for the inverse problem.

First method: Shape optimization

Iterative method: Find Ω that minimizes

$$j(\Omega) = J(\Omega, u) = \frac{1}{2} \int_{\Gamma_s} \|u - u_m\|^2 d\Gamma$$

subject to the constraint

$$a(\Omega; w, u) = \ell(\Omega; w) \quad \forall w.$$

- Optimization problem with Ω as the design variable.
- Use **gradient-based** algorithms to solve it.

Need to address the following issues:

- 1. Differentiation with respect to Ω (shape differentiation).
- 2. How to calculate derivatives in the presence of constraints given by variational equations?

Shape differentiation

Derivative of $j(\Omega)$ in the V-direction

Given the mapping

$$egin{aligned} \phi_arepsilon: \Omega \subset \mathbb{R}^2 & o \Omega_arepsilon \subset \mathbb{R}^2 \ \phi_arepsilon(oldsymbol{x}) = oldsymbol{x} + arepsilon oldsymbol{V}(oldsymbol{x}) & orall oldsymbol{x} \in \Omega, \end{aligned}$$

the **shape derivative** is

$$Dj(\Omega) \cdot \mathbf{V} = \frac{d}{d\varepsilon} j(\phi_{\varepsilon}(\Omega)) \Big|_{\varepsilon=0}$$
.

Differentiation in the presence of constraints

We want to calculate

$$Dj(\Omega) \cdot \mathbf{V} = \frac{d}{d\varepsilon} J(\Omega_{\varepsilon}, u_{\varepsilon}) \bigg|_{\varepsilon=0},$$

where u_{ε} satisfies

$$a(\Omega_{\varepsilon}; w, u_{\varepsilon}) = \ell(\Omega_{\varepsilon}; w) \quad \forall w.$$

Want to avoid computing \dot{u}_{ε} . For that, introduce the Lagrangian

$$\mathcal{L}(\Omega_{\varepsilon}, u_{\varepsilon}, \lambda) = J(\Omega_{\varepsilon}, u_{\varepsilon}) + \mathsf{Re}\Big(a(\Omega_{\varepsilon}; \lambda, u_{\varepsilon}) - \ell(\Omega_{\varepsilon}; \lambda)\Big).$$

So

$$\mathcal{L}(\Omega_{\varepsilon}, u_{\varepsilon}, \lambda) = J(\Omega_{\varepsilon}, u_{\varepsilon}) \quad \forall \lambda.$$

As a consequence,

$$Dj(\Omega) \cdot \mathbf{V} = \frac{d}{d\varepsilon} J(\Omega_{\varepsilon}, u_{\varepsilon}) \bigg|_{\varepsilon=0} = \frac{d}{d\varepsilon} \mathcal{L}(\Omega_{\varepsilon}, u_{\varepsilon}, \lambda) \bigg|_{\varepsilon=0} \quad \forall \lambda.$$

Seems we did not get much, but...

Differentiation in the presence of constraints

Differentiating the Lagrangian with respect to ε gives

$$\frac{d}{d\varepsilon}\mathcal{L}(\Omega_{\varepsilon}, u_{\varepsilon}, \lambda) = D_{1}J(\Omega_{\varepsilon}, u_{\varepsilon}) + \operatorname{Re}\left(D_{1}a(\Omega_{\varepsilon}; \lambda, u_{\varepsilon}) \cdot \boldsymbol{V} - D_{1}\ell(\Omega_{\varepsilon}; \lambda) \cdot \boldsymbol{V}\right) + \operatorname{Re}\left(a(\Omega_{\varepsilon}; \lambda, \dot{u}_{\varepsilon})\right) + D_{2}J(\Omega_{\varepsilon}, u_{\varepsilon}) \cdot \dot{u}_{\varepsilon}$$

Select λ that solves the adjoint equation

$$Re(a(\Omega_{\varepsilon}; \lambda, w)) + D_2 J(\Omega_{\varepsilon}, u_{\varepsilon}) \cdot w = 0 \quad \forall w.$$

Then

$$Dj(\Omega) \cdot \mathbf{V} = \frac{d}{d\varepsilon} \mathcal{L}(\Omega_{\varepsilon}, u_{\varepsilon}, \lambda) \Big|_{\varepsilon=0}$$

$$= D_{1}J(\Omega, u) + \text{Re}\Big(D_{1}a(\Omega; \lambda, u) \cdot \mathbf{V} - D_{1}\ell(\Omega, \lambda) \cdot \mathbf{V}\Big)$$

$$= G(\Omega, u, \lambda, \mathbf{V}).$$

Differentiation in the presence of constraints

Summary. To compute $Dj(\Omega) \cdot V$

ullet Solve the forward problem: Find u such that

$$a(\Omega; w, u) = \ell(w) \quad \forall w.$$

ullet Solve the adjoint problem: Find λ such that

$$a(\Omega; w, \lambda^*) = -(w, (u - u_m)^*)_{\Gamma_s} \quad \forall w.$$

Compute the shape derivative

$$Dj(\Omega) \cdot \mathbf{V} = G(\Omega, u, \lambda, \mathbf{V}).$$

Reconstructions using shape optimization

Reconstructions using shape optimization

Reconstructions using shape optimization

Criticisms to the previous method

- A-priori information (number of scatterers) is needed.
- Robustness problems.
- Method is iterative.

What if we could calculate the scalar field $D_T(\boldsymbol{x})$ such that

$$J(\Omega_{\epsilon}) = J(\Omega) + D_T(\boldsymbol{x})f(\epsilon) + o(f(\epsilon))$$

 $D_T(x)$ can be used as an **indicator** for the position (and shape) of scatterers in the domain Ω .

Topological Derivative [Sokolowski, 1999; Masmoudi, 1998]:

$$D_T(\boldsymbol{x}) := \lim_{\epsilon \to 0} \frac{J(\Omega_{\epsilon}) - J(\Omega)}{f(\epsilon)},$$

where $\Omega_{\epsilon} = \Omega \setminus B_{\epsilon}(x)$, $f(\epsilon)$ is a negative function that decreases monotonically and $f(\epsilon) \to 0$ as $\epsilon \to 0^+$.

Instead, we can define the topological derivative as follows

$$D_T^1(\boldsymbol{x}) = \lim_{\epsilon \to 0} \left\{ \lim_{\delta \epsilon \to 0} \frac{J(\Omega_{\epsilon + \delta \epsilon}) - J(\Omega_{\epsilon})}{f(\epsilon + \delta \epsilon) - f(\epsilon)} \right\}.$$

Define:

$$egin{array}{lll} \Omega_{ au} &=& \{m{x}_{ au} \in \mathbb{R}^n \,|\, \exists m{x} \in \Omega_{\epsilon},\, m{x}_{ au} = m{x} + au m{V}\}, \ m{V} &=& \left\{egin{array}{lll} V_n m{n} & V_n < 0 \text{ constant on } \partial B_{\epsilon}, \ m{0} & \text{on } \partial \Omega. \end{array}
ight. \end{array}$$

Theorem:

$$D_T(\boldsymbol{x}) = D_T^1(\boldsymbol{x}) = \lim_{\epsilon \to 0} \frac{1}{f'(\epsilon)|V_n|} \underbrace{\frac{d}{d\tau} J(\Omega_\tau)}_{\tau=0}$$

for $f(\epsilon)$ such that $0 < |D_T(\boldsymbol{x})| < \infty$.

Remark: (•) is the shape derivative!

Second method: Topological derivative

In our case

$$D_T(\boldsymbol{x}) = \text{Re}\left[\nabla \lambda^*(\boldsymbol{x}) \cdot \nabla u(\boldsymbol{x}) - k^2 \lambda^*(\boldsymbol{x}) u(\boldsymbol{x})\right].$$

Both u and λ can be calculated analytically!

$$u(\boldsymbol{x}) = u_{\mathrm{inc}}(\boldsymbol{x}) = \exp(\mathrm{i}k\boldsymbol{x}\cdot\boldsymbol{d})$$

$$\lambda(\boldsymbol{x}(r,\theta)) = \sum_n A_n J_{|n|}(kr) \exp(\mathrm{i}n\theta)$$

$$A_n = f_n(\text{Fourier components of measured signature})$$

Method:

Plot $D_T(x)$, $x \in \Omega$ and look for points where $D_T(x)$ attains large values.

Target

Topological derivatives for $n_{\rm iw} = n_{\rm dp} = 120$.

Target

Topological derivatives for $n_{\rm iw} = n_{\rm dp} = 120$.

Targets

F15

YF23

B2

 $u=200 \mathrm{MHz}$

Target

 $\nu = 200 \mathrm{MHz}$ Target

Target

 $u = 200 \mathrm{MHz}$

 $\nu=200 \mathrm{MHz}$

Target

Conclusions and future work

Shape sensitivity analysis/topological derivative can be used as a tool to solve inverse scattering problems.

Comparison with other approaches.

3D reconstructions.

Reconstruction of refractive index.

Seismic imaging.

Work with real data!